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Delta baryons and diquark formation in the cores of neutron stars
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We investigate the hadron-quark phase transition in cold neutron stars in light of (i) the observed 
limits on the maximum-mass of heavy pulsars, (ii) constraints on the tidal properties inferred from 
the gravitational waves emitted in binary neutron-star mergers, and (iii) mass and radius constraints 
derived from the observation of hot spots on neutron star observed with NICER. Special attention 
is directed to the possible presence of A(1232) baryons in neutron star matter. Our results indicate 
that this particle could make up a large fraction of the baryons in neutron stars and thus have 
a significant effect on the properties of such objects, particularly on their radii. This is partially 
caused by the low density appearance of As for a wide range of theoretically defensible sets of meson­
hyperon, SU(3) ESC08 model, and meson-A coupling constants. The transition of hadronic matter 
to quark matter, treated in the 2SC+s condensation phase, is found to occur only in neutron stars 
very close to the mass peak. Nevertheless, quark matter may still constitute an appreciable fraction 
of the stars' total matter if the phase transition is treated as Maxwell-like (sharp), in which case the 
neutron stars located beyond the gravitational mass peak would remain stable against gravitational 
collapse. In this case, the instability against gravitational collapse is shifted to a new (terminal) 
mass different from the maximum-mass of the stellar sequence, giving rise to stable compact objects 
with the same gravitational masses as those of the neutron stars on the traditional branch, but whose 
radii are smaller by up to 1 km. All models for the equation of state of our study fall comfortably 
within the bound established very recently by Annala et al. (Nature Physics, 2020)

I. INTRODUCTION

The observations of 2 Mq binary pulsars PSR J1614- 
2230 [1], PSR J0348+0432 [2], PSR J2215+5135 [3], 
and PSR J0740+6620 [4] strongly constrains theoreti­
cal models of the equation of state (EoS) of ultra-dense 
nuclear matter (see, for example, Refs. [5-7], and ref­
erences therein). Moreover, the analysis of data from 
the binary neutron star (BNS) merger events GW170817 
[8] and GW190425 [9] and from the Neutron Star Inte­
rior Composition Explorer (NICER) instrument [10-16] 
made it possible to put additional, tight constraints on 
the behavior of matter at densities higher than nuclear 
saturation density, n0 .

One of the most important conclusions obtained from 
the data of GW170817 is that the radius of a 1.4 Mq 
neutron star (NS) is constrained to R1 4 < 13.6 km 
(see, for example, Ref. [17]). Moreover, based on the 
data of GW170817, it has been argued that a NS could 
not support a mass larger than MNJSax ~ 2.3 Mq [6].
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Considering this additional constraint it follows that 
R1.4 = 11.0-0.6 Mq [18]. An improved analysis of the 
GW170817 data has restricted the originally determined 
tidal deformability A1 4 < 800 of this NS to A1 4 = 
190-+319600 [19].

The second BNS merger, GW190425, was detected on 
April 25th, 2019 with the LIGO Livingston interferome­
ter. To date, an electromagnetic counterpart associated 
with this event has not been detected. The inferred mass 
of the primary object is, under the low-spin (high-spin) 
assumption, M1 = 1.60-1.87Mq (M1 = 1.61-2.52Mq), 
and for the secondary object M2 = 1.46 — 1.69 Mq 
(M2 = 1.12—1.68Mq). With a total gravitational mass of 
Mtot = 3.4+0.4 Mq, this is the most massive BNS system 
ever detected, differing by five standard deviations from 
the Galactic BNS mean value of ~ 2.69 Mq (see, for ex­
ample, Ref. [20]). The fact that the signal of GW190425 
was only detected by one interferometer and that no elec­
tromagnetic counterpart has been observed renders the 
constraints on the mass and radius of this NS not as tight 
as those obtained with GW170817. Nevertheless, there 
are indications that a massive (M > 1.7Mq) NS would 
have a radius larger that R ~ 11 km [9].

Observations of the isolated pulsar PSR J0030+0451 
made with the NICER instrument produced two in­
dependent measurements of the pulsar's mass and ra-
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dius, M = 1.34+-00..1154 Mq and an equatorial radius of 
Req = 12.71+1.14 km [10], and M = 1.44+0.15 Mq and 
Req = 13.02-1.06 km [13].

Last but not least we mention the very recent work [21] 
where the limits on the maximum NS mass, gravitational- 
wave data, and information about neutron star masses 
and radii from X-ray emissions have been used to arrive 
at R1.4 = 12.32—1.47 km for the radius of a 1.4 Mq NS.

Both the existence of ~ 2Mq pulsars as well as the 
data from gravitational-wave events of BNS mergers sug­
gest that the NS EoS needs to be relatively soft at low 
and intermediate nuclear densities in order to achieve 
relatively small radii for ~ 1.4 Mq NSs, such as those 
quoted above, but much stiffer at high densities to ac­
commodate heavy 2 Mq NSs too. One possible theo­
retical scenario leading to such a behavior of the EoS 
is obtained if NS matter undergoes a phase transition 
from hadronic matter to deconfined quark matter [22­
26]. Neutron star models containing such matter are re­
ferred to as hybrid stars (HSs). At low and intermediate 
nuclear densities, the matter in the cores of such stars is 
assumed to be composed of neutrons, protons, and hy­
perons, while at higher densities these particles give way 
to the formation of quark matter. made of deconfined up 
(u), down (d), and strange (s) quarks. The transition of 
one phase of matter to the other is generally modeled as 
a Maxwell transition or a Gibbs transition [27-29]. De­
pending on the hadron-quark surface tension [30, 31], the 
transition region is characterized either by a jump from 
one phase to the other (Maxwell case), or the existence 
of a mixed phase where pressure varies smoothly with 
density (Gibbs case).

If quark matter exists in the interiors of NSs, it ought 
be in a color superconducting state [32-34]. Such a state 
would be energetically favored, since a system of weakly 
interacting fermions at low temperatures is unstable with 
respect to the formation of diquarks, similarly to the 
formation of Cooper pairs in ordinary superconductors. 
(For recent studies of quark matter in NSs, see [26, 35­
37], and references therein.) One possible condensation 
pattern of color superconducting quark matter, which 
is studied in this paper, is the so-called 2SC+s phase 
[32, 38], which is expected to occur when the strange 
quark is too massive to participate in the formation of 
pairs with u and d quarks. In this case, only green and 
red u and d quarks can form diquark condensates due the 
symmetry breaking of the SU(3)color group.

The possible existence of hyperons in the cores of NSs 
has been investigated by numerous authors using either 
phenomenological or microscopic approaches for the neu­
tron star matter EoS with hyperons (see Ref. [39, 40] for 
comprehensive lists of references). Depending on the mi­
croscopic many-body theory, it has been found that such 
particles may appear rather abundantly in NS matter at 
densities just a few times higher than the nuclear sat­
uration density n0 [41, 42]. The situation is different 
for the charged states of the A baryons. In fact, the 
possible presence of this particle in NSs has long been 

ignored because early studies carried out with the rela­
tivistic mean-field theory suggested that As would only 
appear at densities greater than ~ 10 n0, too high to be 
reached in the cores of NSs [43]. Updated microscopic 
models and tighter constraints on the model parameters, 
however, paint a different picture [44-50]. These studies 
show that As could in fact make up a large fraction of 
the baryons in neutron star matter and thus have a sig­
nificant effect on the properties of NSs. In particular, the 
radii of NSs are sensitive to the A population [45, 51, 52]. 
The relevance of As for heavy ion collisions and different 
nuclear physics processes has been emphasized in [53-55].

In this work, we investigate the hadron-quark phase 
transition in cold neutron stars in light of the observed 
limits on the maximum-mass of heavy pulsars, con­
straints on the tidal properties inferred from the gravita­
tional waves emitted in binary neutron-star mergers, and 
mass and radius constraints derived from the observation 
of hot spots on neutron star observed with NICER. The 
details of the construction of the hybrid EoS as well as the 
equilibrium and charge neutrality conditions are given in 
Sect. II. For the description of the hadronic matter, pre­
sented in Sect. III, we use a density dependent relativistic 
mean-field model which includes the strange mesons u* 

and — All members of the baryon octet as well as the 
A baryons are included in our model. In Sect. IV, we 
provide the details of the non-local quark model used to 
describe the quark phase inside of HSs, including the pos­
sibility of 2SC+s color superconductivity. Section V is 
devoted to the presentation and discussion of the results. 
The conclusions are given in Sect. VI. Finally, details of 
the 2SC+s phase calculations are provided in Appendix 
A.

II. THE HYBRID EOS

We model the matter in the inner cores of NSs under 
the hypothesis of a hadron-quark phase transition. We 
use the SW4L parametrization to model the matter at 
low nuclear densities and use a non-local chiral quark 
model to describe the matter at high nuclear densities. 
For the construction of the corresponding hybrid EoS, 
there are some general characteristics and considerations 
to be taken into account, as discussed below.

The phase transition of hadronic to quark matter is 
modeled by using both the Maxwell and the Gibbs for­
malism. The systematics of the phase transition is inti­
mately related to the unknown value of the hadron-quark 
surface tension, uHQ. If this value is greater than a crit­
ical value, estimated to be around 70 MeV/fm2, a sharp 
phase transition will be favored, where matter changes 
from hadronic matter to pure quark matter at a certain 
radial location inside a HS [56, 57]. This situation is 
described by the Maxwell formalism. For this type of 
phase transition, the pressure is isobaric in the transi­
tion region and the EoS is characterized by an energy 
gap at the interface between hadronic and quark matter. 
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In this scenario, the electric chemical potential might not 
always be continuous along the interface (for a more de­
tailed discussion, see Ref. [39]).

On the other hand, if ctHq is lower that the critical 
value, the favored scenario is the one in which a mixed 
phase is formed where hadrons and quarks coexists. This 
type of phase transition is described by the bulk Gibbs 
formalism, where the electric charge is conserved globally. 
For intermediate cases of ctHq, where one has to take into 
account both Coulomb and surface energy contributions, 
a series of geometrical structures (blobs, rods, and slabs), 
also called the pasta phase, might appear (see [23, 58], 
and references therein). The nature and characteristics 
of this phase are strongly dependent on the value of ctHq .

The hope is that NS data will help to shed light on 
the possible hadron-quark phase transition in the inner 
cores of NSs. Neutron star masses and radii are gen­
erally considered to be possible the primary indicators, 
but clues may be provide by other pointers as well. One 
such pointer could be the speed at which the conversion of 
hadronic matter to quark matter proceeds. As it has been 
shown recently [59], if the phase transition is sharp and 
the conversion rate slow (with respect to the characteris­
tic oscillation frequency time-scale), then compact stars 
located beyond the gravitational mass peak will remain 
stable. In this case, the instability against gravitational 
collapse is then shifted to a new terminal mass differ­
ent from the maximum-mass of a compact-star sequence. 
On the contrary, if the conversion is fast, the traditional 
stability criteria for stellar configurations against radial 
oscillations is recovered. This phenomena could give rise 
to a new family of twin-like stars, stars with the same 
gravitational masses as ordinary compact stars but dif­
ferent radii. The standard twin-like stars scenario has 
been studied for several different hybrid EoSs [60-62].

A. Equilibrium conditions

Equilibrium conditions for the hybrid EoS implies ther­
mal, chemical and mechanical equilibrium. Since we are 
considering cold hybrid matter, thermal equilibrium be­
tween the hadronic and quark phase is automatically sat­
isfied.

Chemical equilibrium of nucleons, hyperons and 
quarks in the cores of hybrid stars depends not only on 
the chemical reactions occurring between them, but also 
on the local density. For the low nuclear density phase, 
we consider the chemical equilibrium given by

Mb = Mn + qB Me , (1)

where qB is the baryon electric charge and Mn and Me 

are the neutron and electron chemical potentials, respec­
tively.

In the case of quark matter, we need to deal with quark 
flavors and quark colors, which, in principle, should lead 
to six different chemical potentials. In particular, the 
presence of color superconductivity breaks down the color 

gauge symmetry SU(3)color into the subgroups U(1)3 and 
U(1)8 leading to two independent chemical potentials, M3 
and M8 respectively, associated with the color charges. In 
the 2SC+s phase, strange quark decouples from the su­
perconducting system of up and down quarks (see Ap­
pendix A for details). Red and green quarks are de­
generate, and diquarks condense in the blue direction, 
as it happens for two-flavor color superconductors (2SC) 
[63, 64]. Thus, we can take M3 = 0 so that M8 remains as 
the only chemical potential related to the color charges. 
Therefore, chemical equilibrium of the quark phase is 
given by

_ _ 2 1
Mur Mug M — 3Me + 2^3M8 ,

21
Mub M — 3 Me — 3 m8 ,

11
Mdr Mdg M + 3 Me + 233M ’

11
Mdb M + 3 Me — 3 m8 ,

Msr = Msg = Mdr , 
Msb = Mdb ,

where m = Mn/3-
Electrons and muons satisfy the condition 

(2)

(3)■. + Ve + e m ,

which implies for the chemical potentials of these parti­
cles

mb = Me + MVe + M'., . (4)
For cold NSs, as considered in this work, the neutrino 
chemical potentials are zero and mb = Me-

Mechanical equilibrium of hybrid matter is guaranteed 
through the condition

PH(MH, MH, {aj}) = Pq(Mq, Me, {Kk}), (5)

where the quantities {aj} and {Kk} in Eq. (5) represents 
the field variables characterizing the solutions to the field 
equations of the hadronic and quark phases, respectively. 
As it was mentioned before, due the uncertainty of the 
surface tension ctHq, one has to assume a priori the na­
ture of the first-order phase transition, to be either sharp 
(Maxwell-like) or smooth (Gibbs-like). For both cases, 
the transition from the low density (hadronic phase) to 
the high density (quark phase) is possible as long as the 
Gibbs free energy of the quark phase is lower than the 
Gibbs free energy of the hadronic phase. The Gibbs free 
energy, at zero temperature, is given by

GE (6)

where nB is the baryon number density and Mi denotes 
the chemical potential of each particle species i present 
in the system. The quantity 

ni
d Q 
dMi ,

(7)
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represents the number density of a particle of type i, 
which is obtained from the corresponding thermody­
namic potential (see Sect. II B for the leptonic contri­
butions and Sects. III and IV for details related to the 
hadronic and quark phases, respectively). Once the 
grand canonical potential of the system is obtained, the 
pressure is obtained from P = —Q and the energy density 
of the system follows from

e = —P + E pi ni . (8)
i

Assuming a sharp Maxwell phase transition, the con­
dition of chemical equilibrium given by GEH = GqE must 
be satisfied together with Eq. (5). In this case, there 
is a jump in the energy density between the hadronic 
and quark phases and the pressure is constant during 
the transition.

In the case of a smooth Gibbs phase transition, a mixed 
phase of hadrons and quarks is formed and the pressure 
grows monotonically in the transition region. Therefore, 
not only Eq. (5) must be taken into account, but the 
following equations

nmix = (1 — x)nH + XnB ,
emix = (1 — x)eH + xeq , (9)

are to be taken into account as well. Here nB (eH) and 
nqB (eq) are the baryon number (energy) densities of each 
phase. The quantity x = Vq/V denotes the volume pro­
portion of quark matter, Vq, in the unknown volume V. 
Therefore, 0 < x < 1 by definition, depending on how 
much hadronic matter has been converted into quark 
matter [39].

where r , g, b stand for red, green, and blue colors, re­
spectively. Note that the condition p3 = 0, mentioned in 
Sect. II A, implies that nr = ng .

In the case of a Gibbs phase transition, the condition 
of global electric charge neutrality is given by

[(1 - x)qH nB + xqq,i nl] =0. (12)
i,l

In contrast to local electric charge neutrality, the global 
charge neutrality condition allows for a positive net elec­
tric charge in the hadronic phase, which makes mat­
ter more isospin symmetric, and a net negative electric 
charge in the quark matter phase. In other words, the 
concept of global charge conservation involves only the 
mixed phase but not the pure hadronic matter phase or 
pure quark matter phase.

In this work we consider, for both the hadronic and 
quark phases, that the leptonic contribution comes from 
electrons and muons treated as free Dirac particles. The 
thermodynamic potential is thus given by

1 rpFi p4
Ql =---- 2^ dP / 2 , 2, (13)

n B ' Vïj2 + m2

where pFl are the Fermi momenta of leptons of mass ml . 
We use me = 0.5 MeV and mM = 105.66 MeV.

B. Charge neutrality condition

In addition to the pressure condition given by Eq. (5), 
one needs to impose on the field equations either local 
or global electric and color charge neutrality, depending 
on the nature of the phase transition. For a Maxwell 
transition, the local electric charge conservation reads

E ' ' =0, (10)
i,l

where qi is the electric charge of all particles in the 
hadronic (H) or quark (q) phases. The quantity ql is 
the corresponding expression for the electric charges of 
leptons. The particle number densities ni,l are obtained 
by making use of Eq. (7) for each type of particle.

Regarding the color charge neutrality condition, it is 
known that strange quark matter is color neutral. How­
ever, for the 2SC+s phase, due the SU(3)color symmetry 
breaking, diquarks are not color neutral. Thus, we re­
quire

dQ 1
. + ng— 2nb) = 0, (11)

III. THE HADRONIC PHASE

For the description of hadronic matter, we use the 
density dependent nonlinear relativistic mean-field model 
with the SW4L parametrization [46, 65]. This model 
accounts for medium effects by making the 
meson-baryon coupling of the p-meson dependent 
on the local baryon number density. Models that 
consider a density dependence for all mesons have 
first been introduced in [66]. The p-meson cou­
pling used in our paper has the same density de­
pendence as the one in [66]. One of the advantages 
of this model is that by choosing proper Gaussian or 
Lorentzian functional forms for the density dependence, 
the slope of the symmetry energy can be fixed without 
affecting other nuclear properties or the stiffness of the 
nuclear EoS. The slope of the symmetry energy has be­
come very important for NS matter calculations due to 
its effect on the composition and properties of neutron 
stars [67].

The interactions among the baryons are described by 
the exchange of u, w, p, u*, and mesons. The la­
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grangian of this model is given by

L = ^B hJidM - g.B - g0BF - 1 gpB (n)T •
B

-(mB - gaBa - ga*BCT*)] ^B

+1 (dMadMa - maa 2)

3bamn (gaNa) 4 Ca (gaNa)
-1 wMvwMV + 1 m2 wpwM

- 4 Ppv • p^v +1 mppM • pM

-1 Fv ^Mv + 1

+1 (dpa*dMa* - m£.a*2) , (14)

where the sum over B is over all the baryons in the baryon 
octet as well as the four electrically charged states of the 
A resonance. Baryon-baryon interactions are modeled 
in terms of scalar (a, a*), vector (w, ^>), and isovector 
(p) meson fields. The quantities gpB (n) denote density 
dependent isovector meson-baryon coupling constants 
given by 

gpB (n) = gpB (no)exp -ap 7 (15)

where n = B nB is the total baryon number density. 
Once the field equations for the baryons and mesons are 
obtained by solving the equations of motion that follow 
from Eq. (14), we use the relativistic mean-field approx­
imation in which the meson field operators are replaced 
by their mean-field values. By virtue of this procedure, 
we obtain a coupled, nonlinear algebraic system of meson 
mean-field equations,

m^a = gaB nSB - ba mN gaN (gaNa)2

B

ca gaN (gaNa)
a* = ^2 ga*B nB ,

B

m2 ü = y2 g^BnB , (16)
B 

mpp= y2 gpB (n)l3BnB ,
B

m^ = ^2 g^BnB ,
B

where I3B is the 3-component of isospin, and nsB and 
nB are the scalar and particle number densities for each 
baryon B, which are given by

nS
B

1 fPFB d3p mB

4n2 o (2n)3 ^p2 + mB2 ,

nB

(17)

(18)

Here pFB is the Fermi momentum and mB = mB — 
gaBa — ga*Ba* is the effective baryon mass.

The chemical equilibrium condition pn+pe = pB 

of NS matter was already defined in Eq. (1). Since 
pB = wB (pFB), where wB (pFB) is the single-baryon 
energy,

wB (p) = g ...B w + gpB (n)pl3B

+ g0B <2 + pFB + mB + R , (19)

at the Fermi surface, the A- state becomes pop­
ulated in NS matter once the density is high 
enough so that pn + pe = w^- (0) is fulfilled. 
The situation is graphically illustrated in Fig. 1 
where we compare the density dependences of 
pn + pe and w^- (0) with each other, computed 
for the hadronic model (SWL4) of this work. As 
can been seen from this figure, equality between 
pn +pe and w^- (0) is already reached at densities of 
just around twice nuclear saturation density (we 
will come back to this issue in Sect. V (see Fig. 
6) there), which are easily reached in the cores of 
neutron stars.

FIG. 1. (Color online) Comparison of the neutron-plus- 
electron effective chemical potential, pn + pe, with the 
lowest single-particle energy state of the A- , wA- (0^ 
in NS matter. The presence of A- particles is trig­
gered at the density where the two curves cross, at 
around 2n0.

The term R = [dgpB (n)/dn]I3BnBp in Eq. (19) is 
the rearrangement term necessary to guarantee 
thermodynamic consistency [68]. This term also af­
fects the pressure of hadronic matter, which is given by

Ph =
1 V (PFB d P4

n2 0 P , *
1 2 2
2 ma °

1 2 “* 2 . 1 2 -2 , 1 2-2, 1 2 7
— 2ma*a* + 2m2ü + 2mpP + 2mp'7 (20)

— 3ba mN (gaN a)3 — 4 Ca (gaN a)4 + nR.
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Quantity SW4L Parameters
mCT (GeV) 0.5500
rn^ (GeV) 0.7826
mp (GeV) 0.7753
mCT* (GeV) 0.9900
rn^ (GeV) 1.0195

gaN 9.8100
g^N 10.3906
gpN 7.8184

g&* N 1.0000
g^N 1.0000
ba 0.0041
ca -0.0038
ap 0.4703

TABLE I. Parameters of the SW4L parametrization that lead 
to the properties of symmetric nuclear matter at saturation 
density given in Table II.

Saturation Properties SW4L
no (fm-3) 0.150
Eo (MeV) -16.0
Ko (MeV) 250.0
mN/mN 0.7
Jo (MeV) 30.3
Lo (MeV) 46.5

TABLE II. Properties of nuclear matter at saturation density, 
n0 , obtained for the SW4L parametrization. The entries are: 
energy per nucleon E0, nuclear incompressibility K0 , effec­
tive nucleon mass m*, symmetry energy Jo, and slope of the 
symmetry energy L0.

In this work we use the parameter set SW4L shown in 
Table I. The coupling constants as well as the parameters 
ba, ca, and ap were adjusted according to the properties 
of nuclear matter at saturation density listed in Table II.

The scalar meson-hyperon coupling constants gaY and 
ga*Y are fit to hyperon (Y) single-particle potentials and 
self-potentials derived from the available empirical data 
on hypernuclei, once the vector meson-hyperon couplings 
gwY and g,.-,Y have been specified. In SU(3) symmetry the 
vector couplings are given in terms of the vector mixing 
angle gV, the vector coupling ratio aV, and the meson 
singlet-to-octet coupling ratio z [69] (see also [46, 65, 67, 
70]). The values of these parameters are gV = 37.50°, 
aV = 1, and z = 0.1949, corresponding to the SU(3) 
ESC08 model [71].

Once the vector meson-hyperon coupling constants 
are specified, the scalar meson-hyperon couplings are 
set to reproduce empirical hyperon single-particle poten­
tials in symmetric nuclear matter at nuclear saturation, 

UY(N)(n0), using the relation [65]

UYN)(no) = gA' gY" - gaY< . (21)

The following hyperon potentials have been employed: 
u(N)(n0) = -28 MeV, U \N)(n0) = +30 MeV, and 
U^N)(n0) = -14 MeV. The strange-scalar meson-A cou­
pling constant ga*A has been set to reproduce a satu­
ration self-potential of UA(A)(n0) = —1 MeV in isospin- 
symmetric A-matter, a value close to that suggested 
by the Nagara event [72], using the following,

UA (n0) gwA^0 + g0Ai^0 gaA<0 ga*A<0 .

From this event, the AA binding energy was origi­
nally determined to be 1.01±0.20 MeV. This value 
has subsequently been revised to 0.67 ± 0.17 MeV
[72] due to the change of the e- mass by the par­
ticle data group. Both values consistently sug­
gest a weak attractive AA interaction. We note 
that values of UA(A)(n0) = -1 or -5 MeV have been 
employed in the literature in the past, while phe­
nomenological relativistic mean-field approaches 
suggest values between approximately -14 and +9 
MeV, depending on how tight SU(6) constraints 
are imposed on the approaches [42].

The other strange-scalar meson-hyperon couplings are 
determined relative to that of the A using U,^“)(n0) = 
2uAA)(no/2), so that g-^ = ga*A = 1.9242 [73]. The 
isovector-vector meson-hyperon coupling constants gpY 

are given by gpA = 0 and gpS = gpH = gpN.
To adjust the SW4L parametrization to the nuclear 

properties of Table II we define .x,,B = g,.-,B /gwN. With 
this definition, the ^-Y coupling ratios are given by 
x^a = X0Y = 1.7855 and x0,Y = 7.7247.

Most studies of As in dense matter have been con­
ducted in the standard relativistic mean-field (RMF) ap­
proach [52-54, 74-76], the density-dependent RMF ap­
proach [46, 48, 49], or the (density-dependent) relativis­
tic Hartree-Fock approach [44, 45], all indicating at the 
abundant existence of As in NS matter. We note, how­
ever, that a recent study performed for the quark-meson 
coupling model has suggested that A isobars are absent 
in NSs [77]. The reason for that are the many-body forces 
generated by the change in the internal quark structure of 
the baryons in the scalar mean fields generated in dense 
nuclear matter.

All of these studies suffer from the problem that the 
meson-A couplings are only poorly constrained so that 
particular coupling sets must be chosen with which to 
conduct the analysis. The meson-A coupling space has 
been systematically investigated in Ref. [46, 47] and will 
be further explored and constrained in this work.

To include As in the study of dense NSs matter, we 
follow a two-pronged approach. First we shall consider a 
quasi-universal meson-A coupling scheme

XCTA = -'A A = 1.1 XpA = X^A = 1.0 XCT*A =0.0 , (22)
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where xff.B = ga*B/ga*A and ga*a = 1.9242. Next, we 
explore the parameter space of the ct-A coupling con­
stant, related with the effective A mass, mA, consid­
ering the constraint imposed by the event GW170817 
on NSs radii. We study coupling ratios in the inter­
val 1.1 < .raA < 1.258. The lower bound xcta = 1.1 
(together with xwa = 1.1, xpa = 1.0) satisfied the con­
straints on the potential of As in symmetric nuclear mat­
ter at saturation density [46, 48, 49, 78]. The upper 
bound xcta = 1.258 is determined by the microscopic 
stability of matter, that is, for values xAA > 1.258 pres­
sure is no longer monotonously increasing with density 
so that the matter becomes microscopically unstable.

where C = y2Y4 is the operator of charge conjugation. 
This matrix can be simplified by a color rotation,

s=
^S22 0 0

S52 S55 0
s 72 s 75 s 77

(28)

The non-diagonal matrix components are negligible in 
the one-gluon exchange regime [79, 80], so that one only 
needs to keep the elements s22 , s55, and s77. In this 
work, we consider the formation of (ur,dg) and (ug,dr) 
diquark pairs. Therefore

IV. THE QUARK PHASE

For the description of quark matter, including diquarks 
in the SU(3) non-local model, we use the Lagrangian 
given by

S22 = (^Y5A2A2^) , S55 = S77 = 0 . (29)

Including the new diquark bosonic field A and its as­
sociated auxiliary field D, we bosonize the euclidean ef­
fective action, SE, which follows from Eq. (23). Then, in 
the mean-field approximation,

MFASE

G
l = +mMx) - 2s ja(x ja(x) +

G
+ja(x)jp(x)]+ -2vjp(x)jpi(x)

- H Aabc ja (x) jb (x) jc (x) - 3j (x) j (x) jC (x)] ( 23) 

where Aabc are constants given in terms of the Gell-Mann 
matrices and jas(x), jap(x) and jO‘(x) are interaction cur­
rents. The current quarks masses and the coupling con­
stants Gs, H, and A are taken from Ref. [35]. The vector 
interaction coupling constant, Gv, is expressed in terms 
of the scalar coupling constant, Gs, and is treated as a 
free parameter.

To include diquark channels in the model, an addi­
tional term of the form

LD = - jD (x)]t jD (x) >

needs to be added to Eq. (23). Here GD is the diquark 
coupling constant expressed in multiples of Gs. The di­
quarks currents are given by

jD (x) y d4 zg(z)^c (x + 2) iY5AaAa/(x - 0 ,

(25) 
—T

where ^C = y2Y4"0 (x). The matrices Aa and Aa/ oper­
ate in the color and flavor spaces, respectively, and take on values 2, 5, 7 (see Appendix A for details). The non­

local regulator g(x - y) is related to its momentum space 
representation, g(p), via

g(x - y)=/ •' ei(x-y)p g(p) .

The inclusion of color superconductivity leads to a ma­
trix for the diquark condensates that can be written as

SAA' = (^cY5AaAa/,

(24)

(26)

(27)

V (4)
211 ln A(p”-

2 (öaSa + GSa Sa + Sa Va - Va Va)

+ "2AabcSaSbSc + 2AD + GdD D
(30)

where A(p ) is the inverse of the quark propagator with 
interactions and Sa and Va are the mean-field values of 
the auxiliary fields corresponding to <ra and 0a, respec­
tively. After some algebra in the first term of Eq. (30) 
(see Appendix A for details) the regularized thermody­namic potential for the 2SC+s phase reads

Q = - 2 ? i *

- ln[(pu+c2

-1 Sf+

q+2q.. + M2c

pS + m2 

+ mU)(pic2 + md)]}

Gs S2 X -

- 2ln|Ac|2

Gv f 2Gs f+f / - gv v,2)

H
+ - SuSdSs + 2A D + Gd D2 - ûRX . (31)

All the quantities in Eq. (31) including the expression 
for QReL are given in Sect. A. From the following set offree

(seven) coupled equations,

dQ dQ dQ
da, dû, dA

(32)

it is possible to determine the mean-field values of ctf , 
Of, and A.

V. RESULTS AND DISCUSSION

In Fig. 2we compare the EoSs of this work with bounds 
on the EoS recently established in Ref. [26]. The bands
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FIG. 2. (Color online) Comparison of the EoSs of this work 
with bounds on the EoS recently established in Ref. [26].

cover a large number of EoSs generated with the speed- 
of-sound interpolation method. As can be seen, all our 
models lie comfortably within the bounds on the neutron 
star matter EoS shown in Fig. 2.

In Fig. 3, we show the mass-radius relationships of stel­
lar configurations, computed for the hadronic SW4L EoS 
of this work, for different values of the < -A coupling ra­
tio xaA. All the three mass-radius relationships obey 
the gravitational-mass constraint set by 2 Mq pulsars 
as well as the radius constraints extracted from NICER 
observations [10, 13] and the gravitational-wave event 
GW170817 [18]. As can be seen in Fig. 3, the impact of A 
baryons on the mass-radius relationship is strong for < -A 
coupling ratios in the range of 1.1 < xaA < 1.258. The 
mass-radius relationships of this figure are computed for 
a w-A coupling constant ratio of x^A = 1.1. We found 
that if we set xaA = -'\-A, the minimum coupling value 
for the EoS to remain microscopically stable (cs > 0) 
is xaA = 1.1. Varying xaA while keeping xAA at 1.1 
changes the maximum NS mass insignificantly, but the 
radii of all stars decrease if xaA > xwa and increase sig­
nificantly if xaA < xwa, where xaA = 1.258 sets the 
upper limit for which cs > 0 holds for xAA = 1.1. Fi­
nally, the mass-radius relationships are virtually the same 
if xaA = xwa regardless whether xaA = 1.1 or 1.258. As 
can be seen in Fig. 3, current observational constrains 
on the radius of a ~ 1.5 Mq NS are reproduced by our 
models for 1.1 < xaA < 1.258. The hope is that future 
observational constraints will allow one to narrow down 
this range and to draw firm conclusions on the possible 
existence of As in NSs.

In summary, we note that the presence of As in NS 
matter strongly modifies the radii of NSs. The 2 Mq mass 
constraint can nevertheless be fulfilled comfortably. This 
is in agreement with what has been found in other studies 

[47, 49-51]. The radii of NSs with canonical masses be­
tween 1.4 to 1.5 Mq turn out to be particularly sensitive 
to the presence of As. They may change by up to ~ 1.5 
km for the theoretically defensible sets of meson-hyperon 
(SU(3) ESC08 model) and meson-A coupling constants 
of this work.

In Fig. 4, we show the results for the hybrid EoS com­
puted for the models introduced in Sects. III and IV. The 
solid lines mark the region where matter exists solely in 
the hadronic matter phase and the dashed lines mark 
the region where the matter exists in the form of quark 
matter in the 2SC+s color superconducting phase. Also 
shown in this figure is the impact of A baryons on the 
EoS, which depends on the xaA coupling ratio as dis­
cussed just above, and the role of the quark vector in­
teraction value, nv (= Gv/Gs), whose value determines 
the pressure at which the hadron-quark phase transition 
takes place. The 2SC+s phase is always energetically 
favored relative to normal (i.e., non-superconducting) 
quark matter, as shown in Fig. 5. Moreover, this result 
is independent of the vector interaction value considered. 
We therefore find that a direct transition from hadronic 
matter to 2SC+s color superconducting quark matter for 
our model, bypassing ordinary quark matter. The inset 
figure shows the pressures of the different phase of matter 
in the phase transition zone. We can see that when the 
xaA coupling constant ratio is increased, the transition 
pressure increases as well. Moreover, larger values of the 
vector interaction lead to a stiffer EoS.

In Fig. 6, we show the particle populations of neu­
tron star matter computed for the hadronic EoSs of this

FIG. 3. (Color online) Mass-radius relationships of compact 
stars computed for purely hadronic matter, based on the 
SW4L parametrization introduced in Sect. III. The observed 
radius constraints are taken from Refs. [10, 13] (orange and 
green horizontal lines, respectively) and Ref. [18] (purple hor­
izontal line). The gray horizontal line shows the minimum 
gravitational mass established for PSR J0740+6620 [4].
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FIG. 4. (Color online) Illustration of the hybrid EoSs com­
puted in this work. Quark matter is treated as a 2SC+s color 
superconductor. The inset figure shows the pressures of the 
different phases of matter in the phase transition region.

^B (MeV)

FIG. 5. (Color online) Comparison of hybrid EoSs. NQM 
refers to ordinary non-superconducting quark matter, 2SC 
refers to quark matter in the 2SC+s superconducting phase. 
The latter turns out to be energetically favored at high chem­
ical potentials. The inset figure shows the pressures in the 
phase transition region. 

ond, negatively charged baryons are generally favored as 
their presence reduces the high Fermi momenta of the 
leptons, but the A- has triple the negative isospin of 
the neutron (I3a- = -3/2), and thus its presence should 
be accompanied by a substantial increase in the isospin 
asymmetry of the system. These arguments, however 
appear to be largely invalid for the following reasons. 
Incorporating the repulsive saturation potential of the 
S hyperon into the determination of the meson-S cou­
pling constants greatly reduces the S's favorability (it 
is totally absent in the compositions shown in Fig. 6), 
and thus it is not likely to compete with the A- state. 
More importantly the overall effect of the asymmetry en­
ergy on the system is significantly reduced when one em­
ploys a parametrization with a density-dependent isovec­
tor meson-baryon coupling constant as done in this work 
(SW4L), which is necessary to satisfy the constraints on 
the slope of the asymmetry energy at saturation density 
[46].

The values of the a-A coupling ratio are x3tA = 1.1 
and xcta = 1.258. As a reminder, the latter value consti­
tutes the maximum possible value allowed by microscopic 
stability of the matter. We see that the appearance of 
the charged states of the A baryon is sequential, begin­
ning with the A- at less than twice nuclear saturation 
density and ending with the A++ at densities as low as 
around 4 times nuclear saturation density, depending on 
the value of xcta. Based on these populations, A baryons 
are abundantly present in NS matter already at densi­
ties that are markedly smaller than the densities of the 
maximum-mass neutron stars (solid vertical lines) associ­
ated with these compositions. Even NSs with a masses in 
the range between 1.4 to 1.5 Mq would possess significant 
populations of As, which, as was shown in Fig. 3, signif­
icantly modifies the radii of these objects. We also note 
that the A population sets in at densities that are less 
than the density at which the hadron-quark phase transi­
tion would set in (vertical dashed lines in Fig. 6) for this 
parametrization. This is most evident for the maximum 
possible value of the a-A coupling ratio, xcta = 1.258, in 
which case all charged A states are present well before 
the threshold density at which quark deconfinement sets 
in. It is interesting to note that, at over certain den­
sity ranges, the A- abundances are comparable to those 
of protons and As. Given the impact As may have on 
the masses and radii of NSs, one might hope that future 
astrophysical observations of these and other NS quan­
tities (e.g., moment of inertia) will help to elucidate the 
relevance of As for dense nuclear matter studies.

work. In the top panel we show how the composition 
looks like if the A baryon is not taken into account in 
the calculation. The other two panels show the hadronic 
populations if all states of the A baryon (A++, A+, A0, 
A-) are taken into account in the calculation. Naively, 
one would assume As would not be favored in NS matter 
for several reasons [46]. First, their rest mass is greater 
than the rest masses of both the A and S hyperons. Sec-

A. Extended branch of stable hybrid stars

The confinement/deconfinement process is not solely 
ruled by the strong interaction, whose timescale is ~ 
10-23 s. Other physical phenomena like Coulomb screen­
ing and surface and curvature effects play important roles 
(see Ref. [81], and references therein). Moreover, it is im-
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FIG. 6. (Color online) Baryon-lepton populations of the neu­
tron stars shown in Fig. 3. The solid vertical lines mark the 
central densities of the maximum-mass stars associated with 
these compositions. The dashed vertical lines mark the den­
sities at which phase equilibrium with 2SC+s quark matter 
would set in.

portant to stress that the strong interaction operates on 
time-scales that are shorter (by several orders of magni­
tude) than those related to the weak interactions. For 
this reason, the weak interaction cannot operate during 
the deconfinement process. In view of that, newly decon­
fined quark matter is transitorily out of chemical equilib­
rium and the abundances per baryon of each particle need 
to be the same in both phases. Several model-dependent 
calculations show that if quark matter is to be produced 
preserving flavor, its final equilibrium state is not acces­
sible directly and a two-step transition between hadronic 
and quark matter must take place, firstly to a flavor pre­
serving out of ^-equilibrium quark state, followed by a 
second weak decay to the final equilibrium quark state 
in ~ 10-8 s (see, for example, Ref. [82], and references 
therein).

FIG. 7. Mass-radius relationships obtained with the hybrid 
EoS for different vector repulsion parametrizations. The hol­
low circles indicate the onset of quark matter and the crosses 
mark the terminal mass model of each stellar sequence.

Since there is no high-density EoS constructed from 
first-principles, it is not clear whether a fluid element 
that oscillates around the transition pressure will suf­
fer a slow or rapid direct conversion. Several works have 
shown that the probability of a hadron-quark phase tran­
sition is related to a model-dependent timescale (see, for 
example, Refs. [82-84], and references therein). In addi­
tion, there are some results that indicate this timescale 
is around ~ 10-3 s [85] or even larger (see, for example, 
Refs. [86-88]). These theoretical studies indicate that 
the hadron-quark phase transition should be considered 
to be slow. Because of these theoretical uncertainties, 
we consider both the slow and rapid conversion scenar­
ios between hadronic and quark matter and analyze their 
astrophysical implications.

In Fig. 7, we show the mass-radius relationship of HSs 
for a fixed value of xaA but different values of the vector 
repulsion parameter nv. The onset of quark matter in 
the cores of these stars is marked with hollow circles. 
It can be seen that quark deconfinement occurs only for 
stars very close to the maximum-mass peak of each stellar 
sequence. This is in agreement with results reported in 
the literature previously (see, for example,

Refs. [35, 61, 89], and references therein), where it was 
shown that the rapid conversion of hadronic matter to 
quark matter in HSs tends to destabilize such objects. 
For a rapid conversion, the timescale associated with 
transforming hadronic matter to quark matter in a star is 
much shorter than the timescale set by the stellar pertur­
bations oscillations [59, 89]. The situation is dramatically 
different if the conversion proceeds slowly, that is, if the 
timescale associated with transforming hadronic matter 
to quark matter is much larger than the timescale set by 
the stellar perturbations. In the latter case, a new (ex-
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FIG. 8. (Color online) Mass-radius relationships obtained 
with the hybrid EoS of this work (xwa = 1.1). The con­
straints on M and R are the same as in Fig. 3. The hollow 
circles mark the onset of quark deconfinement. The extended 
branches of stable HSs terminate at the crossed locations.

tended) branch of stable HSs can exist, ranging from the 
maximum-mass star of a sequence to a new terminal-mass 
configuration [59, 89]. They are marked with crosses in 
Fig. 7. As shown in Refs. [59, 89] the usual static stabil­
ity condition against gravitational collapse, dM/dec > 0 
(where ec is the central energy density of a star) always 
holds for a rapid hadron-to-quark conversion, but does 
not determine stability against gravitational collapse if 
the conversion is slow.

The stellar configurations in the extended stability 
branch are stable against all radial perturbations (con­
sidering linear perturbations). For this reason, their life­
times are the same as those of the ”traditional” stable 
branch. In all the models we have considered, the cen­
tral density of the terminal-mass configuration ob ject is less than 3000 MeV/fm3 (see, Fig. 12for more details).

As can be seem from Fig. 7, the radii of HSs in the 
extended stellar branch may differ from the radii of stars 
made entirely of hadronic matter by up to ~ 1 km. This 
property, therefore, could serve as a distinguishing fea­
tures between both types of stars.

Another observation to be made from Fig. 7 concerns 

the role of the strength of the vector interaction among 
quarks, nv. As can be seen, increasing the value of nv 

leads greater maximum stellar masses, while, at the same 
time, the extended branches of the HSs shrink. The up­
per limit on the value of nv is obtained when the ex­
tended branch has shrunk to zero, in which case sta­
bility ends at the maximum-mass star of the stellar se­
quence. In what follows, we will study two limiting cases 
for nv, one where its value is determined by the conven­
tional maximum-mass stability criteria mentioned just 
above (denoted nv,max). The other case corresponds to 
the minimum value of nv (denoted nv,min) determined by 
the requirement that at least 2.05 M0 be obtained with 
our models. These cases are shown in Fig. 8 for stel­
lar populations with and without A(1232) isobars. If no 
As are taken into account, the minimum and maximum 
values for nv are nv,min = 0.358 and nv,max = 0.471. If 
As are taken into account in the calculation, we have 
nv,min = 0.370 and nv,max = 0.483 for a relative ct­
A coupling of xcta = 1.1, and nv,min = 0.335 and 
nv,max — 0.470 for -At A — 1.258.

In Fig. 9 we show the square of the speed of sound, 
cs2, as a function of baryon number density for the hybrid 
star EoS with color superconductivity. The locations of 
the maximum-mass stars are marked with vertical bars 
and the crosses show the stellar models at the endpoints 
of stability. The erratic behavior of cs2 below around 4 n0 
has its origin in the A population (see Fig. 6), which 
depends on the ct-A coupling ratio xcta. A case in point 
is xcta — 1.258, for which the A- population sets in at 
densities even less than 2 n0, leading to a sharp drop in 
c2s. The zig-zag behavior of cs2, therefore, is the more

FIG. 9. (Color online) Square of the speed of sound, cs2, as a 
function of normalized baryonic number density, nB /n0, for 
different values of the vector repulsion parameter nv.

prominent the larger the value of x/tA. The speed of 
sound in the quark phase, which is present at densities 
greater than ~ 5 n0, violates the so-called conformal limit 
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of cS < 1/3 (a discussion if this limit can be found it Refs. 
[90, 91]) and reaches values of up to 0.8 in the cores of 
HSs at the terminal mass (Mterm ) . The actual value of 
cs depends, like it is the case for hadronic matter, on the 
stiffness of the hybrid EoS which, in turn, is determined 
by the value of the strength of the vector interaction, nv. 
We note that in order to obtain heavy (~ 2 Mg) NSs 
combined with relatively small radii in the 10 to 12 km 
range (Fig. 3), a rapid increase in pressure in the core of a 
NS is required. This implies a non-monotonic behavior of 
the speed of sound in dense NS matter, which is obtained 
naturally if the matter in the cores of NSs is no longer 
described in terms of nucleons only [91].

B. Notes on the mixed hadron-quark phase

Even for the smaller values of nv studied in this pa­
per, we obtain hybrid stars with only a modest amounts 
of matter in the mixed hadron-quark phase. This fea­
ture can be inferred graphically from Fig. 10, where we 
show the pressure in the quark-hadron transition region 
obtained for the Gibbs and the Maxwell treatment. For 
the Gibbs phase transition (dashed line) we find that the 
mixed phase exists only for baryon chemical potentials 
in the small range of 1563 MeV < pB < 1568 MeV. It 
can also be seen that the phase transition occurs not un­
til relatively high pressure values are reached. We note

(MeV)

FIG. 10. (Color online) Pressure as a function of baryon 
chemical potential, for the Maxwell (solid lines) and Gibbs 
(dashed line) construction.

that we have assumed a surface tension between the con­
fined and deconfined phases of aHQ = 0 when construct­
ing the mixed phase and have not taken into account 
the possibility of structure formation in the mixed phase 
[92-94]. A comparison of our results for the EoS shown 
in Fig. 11 with those of Ref. [58] leads us to conclude 
that the formation of a Gibbs mixed phase is not fa­

vored by our models and that the phase transition ought 
to be Maxwell-like. Moreover, it can be seen from Fig. 
10 that we obtain a narrow mixed phase region for the 
Gibbs construction of the phase transition. The situa­
tion is the same for all the hybrid EoS parameters: the 
result is a short mixed phase region of constant pressure 
inside the star with a sharp interface boundary between 
hadronic and quark matter. If aQH = 0, this would sug­
gest that the formation of geometrical structures due to 
charge rearrangement in the mixed phase is energetically 
disfavored, and that the Gibbs phase transition becomes 
a Maxwell phase transition [58].

nB (n0)

FIG. 11. (Color online) Pressure as a function of baryon num­
ber density, in units of the nuclear saturation. The phase 
transition is modeled as both a Maxwell and a Gibbs transi­
tion.

The mass-radius relationships obtained for the Gibbs 
and the Maxwell treatments are however very similar to 
each other, except that the Gibbs stellar sequence ter­
minates at the maximum-mass configuration of this se­
quence, while the Maxwell sequence extends stably be­
yond the maximum-mass configuration, ending at the ter­
minal mass (see Sect. V A). This can be seen also in Fig. 
12. From the enlarged region in this plot, one sees that 
no mixed phase formation is possible if A baryons are ab­
sent (stellar configurations marked with blue horizontal 
bars). Both Maxwell and Gibbs constructions are possi­
ble for the two limiting values of xaA = 1.1 (red crosses 
and continuous red line) and xa& = 1.258 (black hollow 
circles and black line).

C. Tidal deformability

A new observational window on the inner workings of 
NSs is provided by the gravitational-wave peak frequency 
and the stellar tidal deformability of NSs in binary NS
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L1

FIG. 13. (Color online) Dimensionless tidal deformabilities A1 
and A2 for the hadronic configurations of Fig. 3. The orange 
(cyan) dashed lines represents the 50% (90%) confidence limit 
of the probability contour of GW170817.

e ( M e V fm -3 )

FIG. 12. (Color online) Gravitational mass as a function of 
central energy density for the hybrid EoS of this work. The 
enlarged region shows the results obtained for the Maxwell 
(dotted lines) or Gibbs (continuous line) constructions.

mergers [95]. The binary tidal deformability is given by

A = 16 (12q +1)At + (12 + q)q4A2
13 (1 + q)5 , ()

where q = M2 /M1 is the ratio of the masses of the merg­
ing neutron stars and A1,2 their dimensionless tidal de­
formabilities, which can be calculated by solving an ad­
ditional differential equation together with the Tolman- 
Oppenheimer-Volkoff stellar structure equations [29, 96].

The tidal deformabilities of the two binary compo­
nents of GW170817 has been estimated by the LIGO- 
VIRGO collaboration [8]. Although some concerns re­
garding an apparent discrepancy between data coming 
from Handford and Livingstong LIGO detectors has been 
recently raised [97], there is agreement on the validity 
and strength of the general results obtained by both col­
laborations. The tidal deformability has been used to 
eliminate several EoS that have been used in the past to 
describe the matter in the cores of NSs (see Ref. [23], and 
references therein).

In Fig. 13 we present the tidal deformabilities A1 and 
A2 computed for the NSs shown in Fig. 3. The black 
(gray) curve in this figure denotes the 50% (90%) con­
fidence level curve obtained in Ref. [8] for the low-spin 
scenario. One sees that the presence of As leads to a 
better agreement with the observed data of GW170817. 
It is not possible to extract any information related to 
the appearance of quark matter from the tidal deforma­
bility data of GW170817 as the masses of the objects in 
this BNS are lower than the masses at which our mod­
els predict the existence of quark matter in NSs. Event 
GW190425 involved more massive NSs [9]. But this event 
was only observed by the LIGO Livingston detector and 

no electromagnetic counterpart was detected either so 
that the data from this merger are less constraining and 
informative than those of GW170817.

VI. CONCLUSIONS

In this work we have presented a hybrid EoS which 
leads to masses which satisfy the latest constraints estab­
lished by massive pulsars and a hadronic EoS satisfying 
the restrictions on radii set by gravitational-wave data 
and NICER data. To describe matter in the stellar cores 
of NSs, we have included (in addition to hyperons) all 
charged states ofthe A(1232) baryon in a non-linear den­
sity dependent mean-field treatment based on the SW4L 
parametrization and studied the impact of these particles 
on the masses and radii of NSs. Specifically the latter de­
pend rather sensitively on the value of the a-A coupling 
ratio, xaA = gaA/gaN, which has been taken to be be­
tween 1.1 and its maximum-possible value of 1.258 set by 
the microscopic stability of the matter. We found that 
varying xaA in this range changes the radii of NSs by 
up to ~ 1.5 km, depending on gravitational mass. The 
speed of sound, cs, of hadronic matter remains always 
less than the speed of light for 1.1 < xaA < 1.258, so 
that the hadronic EoSs are causal at all densities. De­
pending on the value of xaA, we find that the presence 
of As in NS matter drastically alters the speed of sound, 
which then would no longer be a monotonically increas­
ing with density, which allows one to accommodate heavy 
NSs with relatively small radii in the 10 to 12 km range.

Quark matter is modeled in the framework of the 
SU(3) non-local NJL model. The effects of color su­
perconductivity on the EoS has been taken into account 
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by considering the 2SC+s diquark condensation pattern, 
for the first time, in a non-local NJL model. Compared 
to normal quark matter, the 2SC+s phase is generally 
energetically favored over normal quark matter at all 
densities. A sequential phase transition from hadronic 
matter, to normal quark matter, to 2SC+s quark matter 
would only be possible if the hadron-quark phase transi­
tion were to occur at the same density at which normal 
quark matter turns into 2SC+s matter. Compared to the 
non-color superconducting case, the inclusion of 2SC+s 
color superconductivity softens the EoS mildly, which in 
turn decrease of the maximum HS mass. Nevertheless, it 
is still possible to satisfy the 2 M0 constraint set by the 
most massive NSs observed to date.

We have constructed the phase transition to quark 
matter using both the Maxwell and Gibbs descriptions. If 
the phase transition is treated as being sharp (Maxwell), 
so that no mixed phase exists, two possible scenarios 
emerge: either a rapid or a slow phase transition. As was 
found in several previous works [35, 61], assuming a slow 
phase transition extends the region of stable stars beyond 
the maximum-mass star of a given stellar sequence, lead­
ing to new stellar configurations that are more compact 
than the stars along the traditional branch. The stars on 
the extended branch have the same mass as their counter­
parts on the traditional branch, but their respective radii 
differs by up to 1 km leading to twin-like stellar config­
urations. When a rapid phase transition is assumed to 
occur, on the other hand, the extended branch vanishes 
and one is left with only the traditional branch of stable 
configurations. In this case, the appearance of a quark 
matter in the cores of NSs almost immediately destabi­
lizes them (aside from a very short portion on the tradi­
tional branch), in agreement with the results of previous 
works (see, for example, Refs. [35, 61], and references 
therein).

As shown recently in Ref. [59], treating the hadron­
quark phase transition as a sharp Maxwell transition 
leads to stable compact stars that, remarkably, lie be­
yond the maximum-mass peak of a stellar sequence (the 
extended branch). This extended branch exists only for 
the Maxwell transition, but disappears if the phase tran­
sition is treated as a smooth Gibbs transition. The stars 
on the extended branch contain pure quark matter in 
their cores, in sharp contrast to the stars on the conven­
tional branch which, at best, contain only small amounts 
of quark matter mixed with hadronic matter. The surface 
tension is known to play a critical role when modelling 
the hadron-quark phase transition in terms of either a 
Maxwell or Gibbs transition. If either one of them has 
its physical correspondence in the core of a compact star, 
the discussion of this paragraph may help to shed light on 
the unknown value of the surface tension ctHq between 
the confined and deconfined phases [58, 92-94].

Possible observable features that may allow one to dis­
tinguish between stars on the conventional branch and 
stars on the extended branch are differences in the stel­
lar radii, which could be as large as around 1 km, and 

the non-radial quasi-normal modes, such as g-modes. As 
shown, for instance, in Refs. [23, 98-101], g-modes are 
only present in compact stars if the nuclear EoS contains 
a sharp (i.e., constant pressure) density discontinuity.

We also calculated the individual tidal deformabilities 
A1 and A2 of merging NSs for our hadronic EoSs. The 
results are consistent with the observational constraints 
from the analysis of GW170817 data. This is very inter­
esting as it shows that a hadronic EoS which includes all 
particles of the baryonic octet plus all charged states of 
the A(1232) is in agreement with present gravitational- 
wave data, as well as the latest observed data on masses 
and radii of NSs.
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Appendix A: Details on the treatment of the 2SC+s 
phase

Working in SU(3), we can write the operator A(p ) of 
Eq. (30) in a compact form,

A(p)— f -/ + M' iMY4 i Ea aIaY5AaAa\
VEa(aa)*Y5AaAa -/ + M - ' J

p (A1)
where AA — AAg(p). This operator is a 72 x 72 matrix 
in Dirac, flavor, color and Nambu-Gorkov spaces. How­
ever, it is possible to evaluate the trace in Eq. (30). Note 
the matrix of Eq. (A1) is the inverse fermion propagator, 
where M — <liag(A/„. Md. Ms) [102]. Then, rearranging 
rows and columns, and using the logarithm trace nota­
tion we can write

Tr{ln[A(p)]}— Tr[ln(Mug,dr)] +Tr[ln(Mur,dg)] 
+ Tr[ln(Mub,sr)] + Tr[ln(Mur,sb)] 
+ Tr[ln(Mdb,sg)] + Tr[ln(Mdg,sb)] 
+ Tr[ln(Mur,dg,sb)] . (A2)

In the framework of the 2SC+s phase, A2 — 0 and 
A5 — A7 — 0. Thus, the matrices Mf,f/ of Eq. (A2) 
involving the quark strange do not have diagonal compo­
nents and such quark decouples. Finally, the only matrix 
structure involving diquarks in a compact form is given
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by

M f P + M ' ipY4

Mud = iAjY5 (A3)

simplifying the problem to calculate now the determinant 
of Mud . By adding the decoupled part due the presence 
of the strange quark we obtain

is the regularized thermodynamic potential of a free 
fermion gas.

To compute the auxiliary fields Sf, V? and D we use 
that dndF = dndkAcI = 2Re (Ac ')• Thus, for 

quarks u and d the auxiliary fields in Eq. (31) associ­
ated with the mean-fields au and ad can be written as

' P2 dP Re 
n3

f (A5)
Ac

Tr[ln A(p)] = ln(qst2 + MSc) + 1ln|Ac|2,

c

where

Ac = qu+c + Mu2c qd-c + Mdc

(1 - 6bc) Ap2 [Ap2 + 2q+c.q-c + 2MucMdc] , 

q±c = (po Ti [f - f g (p±c2)] , p) , 

p±c = (Po T iPfc, p), 

Mfc = mf + CTf g (pfc2) ,

Ap = A g,

being

Hr + p-r ]2

4

The potential of Eq. (31) is regularized to avoid diver­
gences for finite values of the current quark mass. The 
regularization procedure can be expressed through the 
relation

where

B = ■ g(p+c2) [q—2 + Md2] + g(p+c2) (1 - Sbc) A Mdc, 

Bdc = MdW(p+2) [q+2 + MUc] + g*(p+c2) (1 - A Muc 
The auxiliary field associated to as reads

' P2 dP Re 
n3

~Msc g(p+c2y

■ + M .
(A6)

For the auxiliary field associated to 0u, 6d and 6s we have

Vf =

where

■ P^ Re 
n3

c

Ac"
(A7)

Q = qmfa - Qfree + QRrege , (A4)

which is equivalent to Eq. (31), and where Qfree is ob­
tained by setting a = f = A = 0 and

Cuc = i qouc g( puc ) qd-c + Mdc 

+ i g(P+2) (1 - sbc) Ap2 q-dc,

Cdc = -i qodc g p.) [qUc2 + ML] ,

- i g(P-c2) (1 - M Ap2 qouc , (A8)

and

i qos g Ps+2

qs2 + Ms2

(A9)
where qo±fc is the zeroth component of qf±c . Finally, the 
auxiliary field related with the mean-field Af is given by

Vs = - ■ P2 dp Re 
n3

OReg = 1
2-^ 24n2
f,c

' P2 dP Re 
n3

Dud 
-Ac •) (A10)

2- m2f

+3m4fln

(-5mf + 2P2 J Pf

Q(Pfc - mf) ,
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